Project G-Assist 可以接收玩家的语音或文本输入,同时还可以获取游戏窗口中的快照。这些快照被输入到 AI 视觉模型中, 从而提供上下文感知和特定于应用程序的理解。之后 LLM 输出一个富有洞察力和个性化的响应 —— 要么是文本,要么是 AI 语音。为了展示 Project G-Assist 的潜力,英伟达还和 Studio Wildcard 展开合作,上新了一系列演示:例如通过按下快捷键或使用唤醒短语,AI 助手可以帮助玩家解答问题。 AI 助手还能建议玩家是否应该避开游戏中的恐龙,或者提供建议来驯服特定的野兽。
此外,Project G-Assist 在性能调优方面也非常有用。通过一个简单的提示,Project G-Assist 可以评估玩家的系统配置和性能,并立即调整以获得最佳体验。通过一个简单的提示,Project G-Assist 可以评估您的系统配置和性能,并立即进行调整以获得最佳体验。 AI 助手还能够跟踪并绘制帧率、功率使用、PC 延迟以及其他硬件统计数据的图表,并在被提示时提出改善这些指标的方法。NVIDIA NIM 彻底改变了模型部署方式现在,全球 2800 万开发者都可以借助 NVIDIA NIM 轻松地创建生成式 AI 应用。NIM 是一种推理微服务,通过以经过优化的容器的形式提供模型,以部署在云、数据中心或工作站上。NIM 还能帮助企业实现基础设施投资的效果最大化。例如,与未使用 NIM 的情况相比,在 NIM 中运行 Meta Llama 3-8B 所能生成的加速基础设施 AI token 可以提升 3 倍。Cadence、Cloudera、Cohesity、DataStax、NetApp、Scale AI 和新思科技等近 200 家技术合作伙伴正将 NIM 集成到他们的平台中,加快生成式 AI 部署到特定领域应用中的速度,例如 copilots、代码助手、数字人虚拟形象等。从 Meta Llama 3 开始,在 Hugging Face 上现已开始提供 NIM。NVIDIA 机器人技术NVIDIA 正在引领价值 50 万亿美元的工业数字化变革,其通过开发者计划提供对 NIM 的访问权限,以促进 AI 创新。黄仁勋展示了 Foxconn 如何利用 NVIDIA Omniverse、Isaac 和 Metropolis 创建数字孪生,通过结合视觉 AI 与机器人开发工具来实现增强的机器人设施。NVIDIA Isaac 平台为开发者构建 AI 机器人提供强大的套件,包括由 AI 模型以及 Jetson Orin、Thor 等超级计算机驱动的 AMR、工业机械臂和人形机器人。「机器人和物理 AI 正在成为现实,而不仅是出现在科幻小说。这真的令人兴奋,」黄仁勋补充道。全球电子行业领导企业正在将 NVIDIA 自主机器人技术集成到他们的工厂中,利用 Omniverse 中的模拟功能来测试和验证物理世界的新一代 AI。全球 500 多万台预编程机器人也在此行列中。「机器人将遍布所有工厂。工厂将实现对机器人的统筹,而这些机器人将制造新的机器人产品,」黄仁勋解释道。