Codebook Attention 引入了一系列可学习的时空联合隐变量参数,专注于在训练过程中学习数据集中局部区域的结构特征和运动模式。同时,该机制还提取了关键区域的外观特征,强化了局部 ID 的一致性。团队将这一机制应用于脸部和手部区域,并在 Denoising U-Net 的各个阶段进行插入,提升了对关键区域的建模能力。
此外,CyberHost 还设计了一系列基于人体结构先验的训练策略,旨在减少音频驱动下人体动作生成的不确定性。这些策略包括 Body Movement Map 和 Hand Clarity Score。Body Movement Map 可以用于限制视频生成中人体的运动范围。而 Hand Clarity Score 通过计算局部像素的 laplacian 算子来控制生成手部的清晰度,规避手部运动模糊带来的效果劣化。更多细节见论文以及项目主页:CyberHost: https://cyberhost.github.io/, https://arxiv.org/pdf/2409.01876团队介绍字节跳动智能创作数字人团队,智能创作是字节跳动 AI & 多媒体技术团队,覆盖了计算机视觉、音视频编辑、特效处理等技术领域,借助公司丰富的业务场景、基础设施资源和技术协作氛围,实现了前沿算法 – 工程系统 – 产品全链路的闭环,旨在以多种形式为公司内部各业务提供业界前沿的内容理解、内容创作、互动体验与消费的能力和行业解决方案。其中数字人方向专注于建设行业领先的数字人生成和驱动技术,丰富智能创作内容生态。目前,智能创作团队已通过字节跳动旗下的云服务平台火山引擎向企业开放技术能力和服务。更多大模型算法相关岗位开放中。