内容目录
文章来源于互联网:智能体首次达到Kaggle Grandmaster水平,华为用结构化推理补齐思维链短板
前些时日,AI 大模型开始掌握操作计算机的能力,但整体而言,它们与物理世界互动的能力仍处于早期阶段。
为了提高 LLM 在复杂的现实世界中的表现,研究者们提出了各种提示策略来提升大模型的推理和规划能力,比如思维链、思维树和思维图谱。这些进步与工具集成一起,推动着通用 AI 智能体的发展,让它们现在已经能够用 LLM 输出的决策策略来解决序列决策问题(不过依然还相对简单)。
在现实世界中,一个难题的解决方案往往都不是孤立存在的,而需要系统性的方法。这就促使人们开始研究如何让 LLM 通过顺序或并行模块处理智能体任务,从而动态地、分步骤地解决问题。
近日,华为诺亚方舟实验室、伦敦大学学院(UCL)和达姆施塔特工业大学的一个研究团队在这个研究方向上做出了自己的贡献。他们采用第一性原理方法,将数据的分析、处理和预测(即数据科学)作为 LLM 与现实世界环境和外部系统交互的核心和可迁移技能,得到了一种利用 LLM 解决系统数据科学任务复杂性的新方法。然后他们基于此开发了智能体 Agent K v1.0,并让其参加了多模态 Kaggle 竞赛。最终 Agent K v1.0 获得了相当于 6 金 3 银 7 铜的成绩,成为首个达到 Kaggle Grandmaster level 1 的 AI 智能体。
-
论文标题:Large Language Models Orchestrating Structured Reasoning Achieve Kaggle Grandmaster Level -
论文地址:https://arxiv.org/pdf/2411.03562
-
首先,编写一系列有效代码,以自动设置每个模态的训练和测试数据加载器。每个阶段步骤都由单元测试引导,LLM 可以使用这些单元测试来反思和生成更好的代码。之后,引入了一组联合单元测试,让智能体执行跨步骤反思以进行 credit 分配。 -
完成这些后,Agent K v1.0 执行格式化数据生成的第二阶段,其中会生成提交格式和度量函数代码。到这个阶段结束时,任务 t 已被设置好,可以解决了 —— 这里还会用一个最终单元测试来检查。