让AI知识触手可及

首页 » 【课程总结】Day1:人工智能的核心概念

概念一:机器学习(Machine Learning)

  • Machine:不是物理机器,可以理解为:平台、系统、软件、代码
  • Learning:一个平台/系统,经历了某些过程之后,性能或能力得到提升,这个过程就叫学习

机器学习的项目流程:

file

第一步:从宏观角度来分析问题,搞定输入和输出。

结合我们实际应用中会遇到的问题,其输入输出如下:

  • 中英翻译器:
    • 输入:中文
    • 输出:英文
  • 房价预测:
    • 输入:房子
    • 输出:价格
  • 人脸检测:
    • 输入:图像
    • 输出:人脸

第二步:按照输入和输出,构建数据集

一般来说,数据集的构成形式:

  • 一行一个样本,一列一个特征(其实是一个二维表)
  • 前面放特征(输入),最后一个放标签(输出)

备注:在魔塔社区找了一份大众点评评价数据集,其内容即为一个表格,前面是特征,label为标签。
file

第三步:找一个机器学习算法,完成输入到输出的映射

这个过程一般来说是,其本质是完成从输入到输出的映射。

  • 遴选一种算法
  • 把数据给算法
  • 完成算法的训练
  • 模型评估

file

第四步:部署算法,工程集成即可

第五步:模型不断地迭代升级

概念二:算法和模型

  • 算法:Algorithm,偏抽象的,计算机执行一个任务时,具体的执行步骤。
  • 模型:model,具体的,把算法用代码实现出来,这就是模型

概念三:传统算法 VS 人工智能:

传统算法:rule-based algorithm  基于规则的算法

* 规则是人来定的
* 数学和计算机背景
* 复杂度:时间复杂度和空间复杂度很低,硬件要求低,执行速度快
* 效果:鲁棒性差,泛化能力极其弱小,解释性好

人工智能算法:data-based algorithm 基于数据的算法

* 从老数据中挖掘规律:训练(train)/学习(learn)/拟合(fit)
* 把规律作用于新数据:推理(infer)/泛化/预测(predict)/测试(test)
* 非常简单,人人可以学会
* 复杂度:时间复杂度和空间复杂度很高,硬件要求极高,执行速度极慢
* 效果:鲁棒性好,泛化能力极强,解释性差

数学知识:

人工智能需要以下数学知识的支撑:

  • 高等数学:其是用来做优化的(梯度下降法)
  • 概率论和数理统计:做建模思想
  • 线性代数和矩阵论:高性能科学计算

欢迎关注公众号以获得最新的文章和新闻

声明:一起AI技术所有文章,如无特殊说明或标注,均为本站作者原创发布。任何个人或组织,在未征得作者同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。
原创不易,内容版权受保护,感谢您的尊重与支持。
0 0 投票数
Article Rating
订阅评论
提醒
guest的头像


0 评论
内联反馈
查看所有评论
Picture of Dongming
Dongming
见天地,见众生,见自己。

分类文章

推荐活动

推荐文章

Nature子刊,字节跳动开发MD模拟预测框架,助力锂电池液体电解质研究
【学习总结】MCP协议之MCP简述
【模型测试】基于OpenCompass构建Dify应用的自定义评测体系
【模型测试】大模型评测工具OpenCompass使用方法总结
【模型测试】大模型评测工具lm-evaluation-harness的使用方法总结
【模型测试】大模型测评体系的构成
【模型测试】ai-eval-system在线评测系统v0.2预览版本介绍
OpenAI的AI复现论文新基准,Claude拿了第一名
53%性能全面提升,Ayu新模型横扫传统工具,分泌蛋白预测效率再翻倍
仅输入prompt与序列,准确率超90%,UC伯克利等提出文本生成蛋白质多模态框架
0
希望看到您的想法,请您发表评论x