内容目录

前言

本篇文章,我们将通过示例来逐步学习理解导数、求函数最小值、深度学习的本质、以及使用numpy和pytorch实操深度学习训练过程。

线性回归

线性回归内容回顾

《【课程总结】Day5(下):PCA降维、SVD分解、聚类算法和集成学习》中,我们已经了解到线性回归以及线性回归可以表示为:

y=f(x)=x_1w_1 + x_2w_2 + ... + x_{13}w_{13} + b

其中:

  • ( x1, x2, …, x_{13} ):输入特征向量 ( x ) 的各个特征值,代表输入数据的各个特征。
  • ( w_1, w2, …, w{13} ):权重向量 ( w ) 的各个权重值,用来衡量每个特征对输出的影响程度。
  • ( b ):偏置项,也称为截距项,用来调整模型的输出值,即在没有特征输入时的输出值。
  • ( y ):模型的输出值,即线性回归模型对输入特征的预测值。

该公式也可以表示为内积相乘的方式,如下:

y=f(x)=x@w+b

其中:

x@w:特征向量 ( x ) 与 权重向量( w ) 的内积

如果有多个样本的话,那么上面的公示可以进一步表示为:

y=f(X)=X@w+b

其中:

X代表特征矩阵,矩阵的行为一条一条的样本,矩阵的列为多个特征向量。

线性回归方程的解析

  • 在训练时,xy是训练集中的特征和标签,看作是常量w和b是待优化的参数值,看作是变量
  • 在推理时,wb已经找到了比较合适的值固定下来,看作常量;此时x是待预测的样本的特征,是变量
  • 预测的本质:把x带入,求解y。

线性回归=求损失loss函数的最小值

训练过程

由上图可知,训练的大致过程是:

  1. 从训练集中取出一对x 和y
  2. 把x带入模型,求解预测结果y_pred
  3. 找到一种方法,度量y和y_pred的误差loss
  4. 由此推导:
    • loss是y和y_pred的函数;
    • y_pred是模型预测的结果,是w和b的函数;
    • 所以简单来说,loss也是w和b的函数

训练的本质

由上图推导结果可知,训练的本质:求解loss什么时候是最小值。

数学表达:当w和b取得什么值的时候,loss最小

通俗表达:求loss函数的最小值

如何求函数的最小值?

一个例子

y = 2x^2

上述这个示例中,求y最小值是比较简单的,从图形中可以看到x=0时,y=0为最小值。但是实际工程中,并不是所有的函数y=f(x)都能画出来,简单地找到最小值,此时就需要使用导数求最小值。

如果你和我一样忘了导数相关的知识,可以查看《【重拾数学知识】导数、极值和最值》回顾一下。

求解方法(理论方法)

通过回归导数求极值的方法,我们知道大致步骤如下:

  • 第一步:求函数的导数
  • 第二步:令导数等于零
  • 第三步:解方程,求出疑似极值点
  • 第四步:验证该点是否是极值点以及是什么极值点

求解的问题

上述的方法是有一定前提条件的,即:

  • 第一步的求(偏)导数是可以求得的;
  • 第三步(偏)导数为零后,方程(组)是可以解的。

实际工程中,上述方法是不可行的。以Llama3-8B模型为例,其有80亿个输入参数x,按照上述的求解方法是无法求得最小值的!

由此可知,通过推导公式期望一次性求得最小值是不现实的;而我们可以借鉴人工智能中一个重要的思想:迭代法来逐步求解最小值。

求解方法(迭代法)

仍然以y = 2x^2为例,我们可以通过以下方法求得最小值。

随机选择一个出生点x_0

  • x_0在最小值的左侧时,x_0 + 正数(一个非常小的正数)向右侧移动;
  • x_0在最小值的右侧时,x_0 – 正数(一个非常小的正数)向左侧移动;
  • x_0在最小值的时候,不用移动,此时就是最小值。

由导数的单调性可知:

  • x_0在左侧时,由于函数是单调递减的,所以导数<0
  • x_0在右侧时,由于函数是单调递增的,所以导数>0

因此上述的计算方法可以推导得到:

  • x_0在0的左侧时,x_0 + 正数 → x_0 + 导数 → x_0 – 导数

    因为导数<0,加上一个小于的导数相当于减去导数

  • x_0在0的右侧时,x_0 – 正数 → x_0 – 导数

    因为导数>0,减去一个大于的导数相当于减去导数

  • x_0=0时,也可以看作是x_0 – 导数

由此,我们可以得到结论:不管x_0在何处,求最小值时减去导数即向极值逼近。

概念补充

  • 在一元函数中,求函数f(x)在某一点的斜率为导数;在多元函数中,称为偏导数,也就是梯度。
  • 减去导数也就是减去梯度,这就是梯度下降法!

    备注:深度学习在兴起之前,人工智能只能靠支持向量机撑门面;伴随着互联网+GPU芯片的兴起,梯度下降法拥有了使用的土壤,以此人工智能才真正兴起。

代码实现(手动求函数最小值)

y = 2x^2为例

import numpy as np

def fn(x):
    """
    原始函数
    """
    return 2 * x ** 2

def dfn(x):
    """
    导函数
    """
    return 4 * x

def gradient_descent(x0, learning_rate, dfn, epochs):
    """
    使用梯度下降法求函数的最小值

    Parameters:
        x0 (float): 初始点的位置
        learning_rate (float): 学习率
        dfn (function): 导函数
        epochs (int): 迭代次数

    Returns:
        x_min (float): 最小值点的位置
    """
    for _ in range(epochs):
        x0 = x0 - learning_rate * dfn(x0)

    return x0

# 随机选择一个出生点
x0 = np.random.randint(low=-1000, high=1000, size=1)

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

# 使用梯度下降法求最小值
x_min = gradient_descent(x0, learning_rate, dfn, epochs)

# 输出最小值
print("最小值点的位置:", x_min)

运行结果:

f(x,y,z) = x^2 + y^2 + z^2为例

import numpy as np

def df_x(x, y, z):
    """
    f 对 x 求偏导
    """
    return 2 * x

def df_y(x, y, z):
    """
    f 对 y 求偏导
    """
    return 2 * y

def df_z(x, y, z):
    """
    f 对 z 求偏导
    """
    return 2 * z

# 随机选择出生点
x0 = np.random.randint(low=-1000, high=1000, size=(1,))
y0 = np.random.randint(low=-1000, high=1000, size=(1,))
z0 = np.random.randint(low=-1000, high=1000, size=(1,))

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

for _ in range(epochs):
    # 求解每个变量的偏导
    fx = df_x(x0, y0, z0)
    fy = df_y(x0, y0, z0)
    fz = df_z(x0, y0, z0)

    # 每个变量都减去自己的偏导
    x0 = x0 - learning_rate * fx
    y0 = y0 - learning_rate * fy
    z0 = z0 - learning_rate * fz

# 输出更新后的变量值
print("更新后的 x 值:", x0)
print("更新后的 y 值:", y0)
print("更新后的 z 值:", z0)

运行结果:

代码实现(使用pytorch求函数最小值)

上述通过求导数得到函数最小值的方法,也可以通过pytorch来实现,具体代码如下:

y = 2x^2为例

import torch

# 定义原始函数和导函数
def fn(x):
    return 2 * x ** 2

# 说明:pytorch可以通过grad函数求导,所以可以省去写导函数
# def dfn(x):
#     return 4 * x

# 随机选择出生点
# requires_grad=True用来告诉框架该变量是一个张量,需要计算梯度。
x0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

# 使用 PyTorch 进行梯度下降
for _ in range(epochs):
    # 正向传播计算损失
    loss = fn(x0)

    # 反向传播计算梯度
    loss.backward()

    # 获取梯度并更新参数
    with torch.no_grad():
        grad = x0.grad
        x0 -= learning_rate * grad

    # 梯度清零
    x0.grad.zero_()

# 输出最小值点的位置
print("最小值点的位置:", x0.item())

运行结果:

f(x,y,z) = x^2 + y^2 + z^2为例

import torch

def fn(x, y, z):
    """
        函数定义
    """
    return x**2 + y**2 + z**2

# 说明:pytorch可以通过grad函数求导,所以可以省去写导函数
# def df_x(x, y, z):
#     return 2 * x

# def df_y(x, y, z):
#     return 2 * y

# def df_z(x, y, z):
#     return 2 * z

# 随机选择出生点
x0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)
y0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)
z0 = torch.randint(low=-1000, high=1001, size=(1,), 
                   dtype=torch.float32, 
                   requires_grad=True)

# 迭代次数
epochs = 1000

# 学习率
learning_rate = 1e-2

# 使用 PyTorch 进行梯度下降
for _ in range(epochs):
    # 正向传播计算损失
    loss = fn(x0, y0, z0)

    # 反向传播计算梯度
    loss.backward()

    # 获取梯度并更新参数
    # 在测试阶段或者不需要计算梯度的情况下使用 torch.no_grad()
    # 以提高计算效率并避免不必要的梯度计算。
    with torch.no_grad():
        x0 -= learning_rate * x0.grad
        y0 -= learning_rate * y0.grad
        z0 -= learning_rate * z0.grad

    # 梯度清零
    x0.grad.zero_()
    y0.grad.zero_()
    z0.grad.zero_()

# 输出更新后的变量值
print("更新后的 x 值:", x0.item())
print("更新后的 y 值:", y0.item())
print("更新后的 z 值:", z0.item())

运行结果:

内容小结

  • 线性回归

    • 在训练时,xy是训练集中的特征和标签,看作是常量w和b是待优化的参数值,看作是变量
    • 在推理时,wb已经找到了比较合适的值固定下来,看作常量;此时x是待预测的样本的特征,是变量
    • 预测的本质:把x带入,求解y。
  • 求损失loss函数

    • 由训练的过程可知:损失函数loss也是w和b的函数
    • 训练的本质:求损失loss函数的最小值
  • 求函数最小值

    • 理论的求解方法,在现实工程中由于参数巨大,实际不可行。
    • 实际的求解方式是使用迭代思想逐步求解。
    • 不管$x_0$在何处,求最小值时减去导数即向极值逼近,所以我们可以通过迭代法+迭代中减去导数求最小值,这就是梯度下降法。
  • 求导即可使用numpy方法,也可以使用pytorch

    • 梯度下降法使用过程中,一般需要定义epochs迭代次数、learning_rate学习率
    • 梯度下降法的一般过程为:正向传播计算损失→反向传播计算梯度→获取梯度并更新参数→梯度清零
    • 在循环减去梯度的过程中,需要记得使用.grad.zero_()进行梯度清零

发表评论

您的电子邮箱地址不会被公开。 必填项已用 * 标注

分类文章

personal_logo
Dongming
自由职业者

推荐活动

推荐文章

【项目实战】基于Agent的金融问答系统:RAG的检索增强之上下文重排和压缩
【项目实战】基于Agent的金融问答系统:RAG的检索增强之ElasticSearch
【项目实战】基于Agent的金融问答系统:前后端流程打通
【项目实战】基于Agent的金融问答系统:代码重构
【项目实战】基于Agent的金融问答系统:Agent框架的构建
【项目实战】基于Agent的金融问答系统:RAG检索模块初建成
【项目实战】基于Agent的金融问答系统:项目简介
【课程总结】day29:大模型之深入了解Retrievers解析器
【课程总结】day28:大模型之深入探索RAG流程
【课程总结】day30:大模型之Agent的初步了解
内容目录
滚动至顶部